Hyperbolic Relaxation of $k$-Locally Positive Semidefinite Matrices

نویسندگان

چکیده

A successful computational approach for solving large-scale positive semidefinite (PSD) programs is to enforce PSD-ness on only a collection of submatrices. For our study, we let $\mathcal{S}^{n,k}$ be the convex cone $n\times n$ symmetric matrices where all $k\times k$ principal submatrices are PSD. We call matrix in this $k$-locally In order compare PSD matrices, study eigenvalues matrices. The key insight paper that there $H(e_k^n)$ so if $X \in \mathcal{S}^{n,k}$, then vector $X$ contained $H(e_k^n)$. hyperbolicity elementary polynomial $e_k^n$ (where $e_k^n(x) = \sum_{S \subseteq [n] : |S| k} \prod_{i S} x_i$) with respect ones vector. Using insight, able improve previously known upper bounds Frobenius distance between and also quality relaxation $H(e^n_k)$. first show tight case $k n -1$, is, every $H(e^n_{n -1})$ exists $\mathcal{S}^{n, -1}$ whose equal components prove structure theorem nonsingular minors zero, which believe independent interest. This result shows $1< k < -1$ “large parts” boundary do not intersect $\mathcal{S}^{n,k}$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

singular value inequalities for positive semidefinite matrices

in this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎our results are similar to some inequalities shown by bhatia and kittaneh in [linear algebra appl‎. ‎308 (2000) 203-211] and [linear algebra appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

Semidefinite Programming in the Space of Partial Positive Semidefinite Matrices

We build upon the work of Fukuda et al. [SIAM J. Optim., 11 (2001), pp. 647–674] and Nakata et al. [Math. Program., 95 (2003), pp. 303–327], in which the theory of partial positive semidefinite matrices was applied to the semidefinite programming (SDP) problem as a technique for exploiting sparsity in the data. In contrast to their work, which improved an existing algorithm based on a standard ...

متن کامل

Permanents of Positive Semidefinite Hermitian Matrices

In this project, we are interested in approximating permanents of positive semidefinite Hermitian matrices. Specifically, we find conditions on positive semidefinite Hermitian matrices such that we can generalize the algorithm described in Sections 3.6 3.7 of [1] to matrices satisfying these conditions.

متن کامل

Singular Value Inequalities for Positive Semidefinite Matrices

In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Siam Journal on Optimization

سال: 2022

ISSN: ['1095-7189', '1052-6234']

DOI: https://doi.org/10.1137/20m1387407